Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
J Biomol Struct Dyn ; : 1-14, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-20239805

ABSTRACT

The human indoleamine-2,3-dioxygenase 2 (hIDO2) protein is growing of interest as it is increasingly implicated in multiple diseases (cancer, autoimmune diseases, COVID-19). However, it is only poorly reported in the literature. Its mode of action remains unknown because it does not seem to catalyze the reaction for which it is attributed: the degradation of the L-Tryptophan into N-formyl-kynurenine. This contrasts with its paralog, the human indoleamine-2,3-dioxygenase 1 (hIDO1), which has been extensively studied in the literature and for which several inhibitors are already in clinical trials. Yet, the recent failure of one of the most advanced hIDO1 inhibitors, the Epacadostat, could be caused by a still unknown interaction between hIDO1 and hIDO2. In order to better understand the mechanism of hIDO2, and in the absence of experimental structural data, a computational study mixing homology modeling, Molecular Dynamics, and molecular docking was conducted. The present article highlights an exacerbated lability of the cofactor as well as an inadequate positioning of the substrate in the active site of hIDO2, which might bring part of an answer to its lack of activity.Communicated by Ramaswamy H. Sarma.

2.
Gut Microbes ; 14(1): 2073131, 2022.
Article in English | MEDLINE | ID: covidwho-2321505

ABSTRACT

Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and associated clinical sequelae requires well-coordinated metabolic and immune responses that limit viral spread and promote recovery of damaged systems. However, the role of the gut microbiota in regulating these responses has not been thoroughly investigated. In order to identify mechanisms underpinning microbiota interactions with host immune and metabolic systems that influence coronavirus disease 2019 (COVID-19) outcomes, we performed a multi-omics analysis on hospitalized COVID-19 patients and compared those with the most severe outcome (i.e. death, n = 41) to those with severe non-fatal disease (n = 89), or mild/moderate disease (n = 42), that recovered. A distinct subset of 8 cytokines (e.g. TSLP) and 140 metabolites (e.g. quinolinate) in sera identified those with a fatal outcome to infection. In addition, elevated levels of multiple pathobionts and lower levels of protective or anti-inflammatory microbes were observed in the fecal microbiome of those with the poorest clinical outcomes. Weighted gene correlation network analysis (WGCNA) identified modules that associated severity-associated cytokines with tryptophan metabolism, coagulation-linked fibrinopeptides, and bile acids with multiple pathobionts, such as Enterococcus. In contrast, less severe clinical outcomes are associated with clusters of anti-inflammatory microbes such as Bifidobacterium or Ruminococcus, short chain fatty acids (SCFAs) and IL-17A. Our study uncovered distinct mechanistic modules that link host and microbiome processes with fatal outcomes to SARS-CoV-2 infection. These features may be useful to identify at risk individuals, but also highlight a role for the microbiome in modifying hyperinflammatory responses to SARS-CoV-2 and other infectious agents.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Anti-Inflammatory Agents , Cytokines , Gastrointestinal Microbiome/genetics , Humans , SARS-CoV-2
3.
IBRO Neurosci Rep ; 14: 393-397, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2298191

ABSTRACT

Hartnup disease is an autosomal recessive, metabolic disorder caused by mutations of the neutral amino acid transporter, SLC6A19/B0AT1. Reduced absorption in the intestine and kidney results in deficiencies in neutral amino acids and their down-stream metabolites, including niacin, associated with skin lesions and neurological symptoms. The effects on the nervous system such as ataxia have been related to systemic deficiencies of tryptophan (and other neutral amino acids) as no expression of the B0AT1 transporter was found in the brain. In the intestine, SLC6A19 cooperates with ACE2 which has received major attention as the cellular receptor for SARS-CoV-2. When transcriptomics data for ACE2 and its partner proteins were examined, a previously unrecognized expression of Slc6a19 mRNA in the ependymal cells of the mouse brain was encountered that is set into the context of neurological manifestations of Hartnup disease with this communication. A novel role for SLC6A19/B0AT1 in amino acid transport from CSF into ependymal cells is proposed and a role of niacin in ependymal cells highlighted.

4.
Nanophotonics, Micro/Nano Optics, and Plasmonics VIII 2022 ; 12322, 2022.
Article in English | Scopus | ID: covidwho-2256873

ABSTRACT

Thrombus formation issues play an important role in the occurrence, diagnosis and treatment of cardiovascular diseases. The inhibition of platelet aggregation is currently the main therapeutic approach in treatment and prevention of cardiovascular diseases. Understanding the platelet structure and its spectral response to the antiplatelet therapy is the key to personalized medicine today. According to the World Health Organization (WHO) reports, cardiovascular deceases have been remaining the leading cause of death at the global level for the last two decades. The number of deaths has been increased up to nearly 9 million in 2019 [1]. The COVID-19 pandemic has resulted in cardiovascular decease (CVD) increase, which caused deaths in many countries [2-3]. The paper presents studies of the fluorescence intensity of aromatic amino acids namely tyrosine (Tyr) and tryptophan (Trp) in the presence of spherical rhodium and platinum nanoparticles (Rh and Pt NPs). © 2022 SPIE.

5.
Int J Tryptophan Res ; 16: 11786469231154244, 2023.
Article in English | MEDLINE | ID: covidwho-2260619

ABSTRACT

Background: Fatigue, sleep disturbance, and neurological symptoms during and after COVID-19 are common and might be associated with inflammation-induced changes in tryptophan (Trp) and phenylalanine (Phe) metabolism. Aim: This pilot study investigated interferon gamma inducible biochemical pathways (namely Trp catabolism, neopterin, tyrosine [Tyr], and nitrite formation) during acute COVID-19 and reconvalescence. Patients and methods: Thirty one patients with moderate to severe COVID-19 admitted to the University Hospital of Innsbruck in early 2020 (March-May) were followed up. Neurotransmitter precursors Trp, Phe, Tyr as well as kynurenine (Kyn), neopterin, nitrite, and routine laboratory parameters were analyzed during acute infection and at a follow-up (FU) 60 days thereafter. Clinical symptoms of patients (neurological symptoms, fatigue, sleep disturbance) were recorded and associations with concentrations of laboratory parameters investigated. Results and conclusion: Almost half of the patients suffered from neurological symptoms (48.4%), the majority of patients experienced sleep difficulties (56.7%) during acute COVID-19. Fatigue was present in nearly all patients. C-reactive protein (CRP), interleukin-6 (IL-6), neopterin, Kyn, Phe concentrations were significantly increased, and Trp levels depleted during acute COVID-19. Patients with sleep impairment and neurological symptoms during acute illness presented with increased CRP and IL-6 concentrations, Trp levels were lower in patients with sleep disturbance. In general, inflammatory markers declined during reconvalescence. A high percentage of patients suffered from persistent symptoms at FU (neurological symptoms: 17.2%, fatigue: 51.7%, sleeping disturbance: 34.5%) and had higher CRP concentrations. Nitrite and Phe levels were lower in patients with sleeping difficulties at FU and Kyn/Trp ratio, as indicator of IDO activity, was significantly lower in patients with neurological symptoms compared to patients without them at FU. In summary, inflammation induced alterations of amino acid metabolism might be related to acute and persisting symptoms of COVID-19.

6.
Arterial Hypertension (Russian Federation) ; 27(6):608-616, 2021.
Article in Russian | EMBASE | ID: covidwho-2145828

ABSTRACT

The review analyzes milestone information about the function and pathogenic significance of human angiotensin-converting enzyme 2 (ACE 2). ACE 2 is involved in the development of diseases such as hypertension, malabsorption of certain amino acids in the intestine, and a new type of pneumonia COVID-19 caused by the SARS-CoV-2 virus. Based on the latest literary sources, an assessment is made of the role of differential expression of receptor and soluble forms of this protein in the functioning of the renin-angiotensin-aldosterone system, as well as the mechanisms of ACE 2 participation in the sequential chemical conversion of angiotensin II and its effect on the function of the cardiovascular system. The role of ACE 2 in the development of inflammatory processes in the intestine and its effect on the composition of the intestinal microbiota are also discussed. In addition, the review presents most general data on the proteolytic activation of the S-glycoprotein of the SARS-CoV-2 virus and its participation, together with ACE 2, in the process of virus introduction into the host cell. In conclusion, the hypothesis about autoimmune complications of COVID-19 associated with the formation of the S-glycoprotein-ACE 2 immune complex and the production of autoantibodies is considered. Copyright © 2021 All-Russian Public Organization Antihypertensive League. All rights reserved.

7.
Int J Mol Sci ; 23(23)2022 Nov 26.
Article in English | MEDLINE | ID: covidwho-2123706

ABSTRACT

The epithelial barrier's primary role is to protect against entry of foreign and pathogenic elements. Both COVID-19 and Inflammatory Bowel Disease (IBD) show commonalities in symptoms and treatment with sensitization of the epithelial barrier inviting an immune response. In this study we use a multi-omics strategy to identify a common signature of immune disease that may be able to predict for more severe patient outcomes. Global proteomic approaches were applied to transcriptome and proteome. Further semi- and relative- quantitative targeted mass spectrometry methods were developed to substantiate the proteomic and metabolomics changes in nasal swabs from healthy, COVID-19 (24 h and 3 weeks post infection); serums from Crohn's disease patients (scored for epithelial leak), terminal ileum tissue biopsies (patient matched inflamed and non-inflamed regions, and controls). We found that the tryptophan/kynurenine metabolism pathway is a 'hub' regulator of canonical and non-canonical transcription, macrophage release of cytokines and significant changes in the immune and metabolic status with increasing severity and disease course. Significantly modified pathways include stress response regulator EIF2 signaling (p = 1 × 10-3); energy metabolism, KYNU (p = 4 × 10-4), WARS (p = 1 × 10-7); inflammation, and IDO activity (p = 1 × 10-6). Heightened levels of PARP1, WARS and KYNU are predictive at the acute stage of infection for resilience, while in contrast, levels remained high and are predictive of persistent and more severe outcomes in COVID disease. Generation of a targeted marker profile showed these changes in immune disease underlay resolution of epithelial barrier function and have the potential to define disease trajectory and more severe patient outcomes.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Humans , Tryptophan/metabolism , Proteomics , Inflammatory Bowel Diseases/metabolism , Inflammation/genetics , Inflammation/metabolism , Transcriptome
8.
Molecules ; 27(21)2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2099665

ABSTRACT

Synthesis of sulfonamide through an indirect method that avoids contamination of the product with no need for purification has been carried out using the indirect process. Here, we report the synthesis of a novel sulfonamide compound, ({4-nitrophenyl}sulfonyl)tryptophan (DNSPA) from 4-nitrobenzenesulphonylchloride and L-tryptophan precursors. The slow evaporation method was used to form single crystals of the named compound from methanolic solution. The compound was characterized by X-ray crystallographic analysis and spectroscopic methods (NMR, IR, mass spectrometry, and UV-vis). The sulfonamide N-H NMR signal at 8.07-8.09 ppm and S-N stretching vibration at 931 cm-1 indicate the formation of the target compound. The compound crystallized in the monoclinic crystal system and P21 space group with four molecules of the compound in the asymmetric unit. Molecular aggregation in the crystal structure revealed a 12-molecule aggregate synthon sustained by O-H⋯O hydrogen bonds and stabilised by N-H⋯O intermolecular contacts. Experimental studies were complemented by DFT calculations at the B3LYP/6-311++G(d,p) level of theory. The computed structural and spectroscopic data are in good agreement with those obtained experimentally. The energies of interactions between the units making up the molecule were calculated. Molecular docking studies showed that DNSPA has a binding energy of -6.37 kcal/mol for E. coli DNA gyrase (5MMN) and -6.35 kcal/mol for COVID-19 main protease (6LU7).


Subject(s)
COVID-19 , Tryptophan , Humans , Quantum Theory , Models, Molecular , Molecular Docking Simulation , Escherichia coli , Spectroscopy, Fourier Transform Infrared , Sulfonamides
9.
Clin Chim Acta ; 537: 77-79, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2083217

ABSTRACT

BACKGROUND: The scale and the course of antibody production in patients with SARS-CoV-2 is highly variable. Factors involved in the immune regulation during the infection may play a major role in the antibody response. We investigated the relationship between the inflammatory markers of the kynurenine pathway and the concentration of antibodies against SARS-CoV-2 in infected patients 8 - 11 days after admission. METHODS: The study included 72 SARS-CoV-2 - positive inpatients hospitalized between August 2020 and April 2021. The plasma concentrations of tryptophan, kynurenine, anti-SARS-CoV-2 antibodies and the leucocyte count were measured 8 - 11 days after admission. The kynurenine/tryptophan ratio (KYN/TRP ratio) was calculated. Tertiles based on the values for tryptophan, kynurenine, KYN/TRP ratio and the leucocytes were generated. RESULTS: Statistically significant correlations were observed between anti-SARS-CoV-2 antibodies and tryptophan, kynurenine, KYN/TRP ratio and the leucocytes (p-values < 0.001-0.007). The high kynurenine and KYN/TRP ratio tertiles showed significantly lower antibody titers compared to the low tertiles (p-values 0.017 and < 0.001). The low tryptophan and leucocytes tertiles showed significantly lower antibody titers compared to the high tertiles (p-values 0.001 and 0.008). CONCLUSION: Patients with higher activation levels of the kynurenine pathway tended to develop lower anti-SARS-CoV-2 antibody titers.


Subject(s)
COVID-19 , Kynurenine , Humans , Kynurenine/metabolism , Tryptophan/metabolism , Immunity, Humoral , SARS-CoV-2
10.
Journal of the Canadian Association of Gastroenterology ; 4, 2021.
Article in English | EMBASE | ID: covidwho-2030670

ABSTRACT

The proceedings contain 243 papers. The topics discussed include: KRT15+ tumor cells as putative cancer stem cells in esophageal cancer;the circadian timing of inflammatory bowel disease;GM-CSF autoantibodies: predictors of Crohn's disease development and a novel therapeutic approach;an INULIN-type Fructan enriched exclusive enteral nutrition formula modulates the gut microbiome and promotes expansion of anti-inflammatory T cell subsets to suppress colitis;dietary tryptophan modulates kynurenine and indole production in healthy individuals;dorsal root ganglia neuronal responses and substance p production are higher in male mice;food antigen-stress interaction leads to increase pain signaling in ileum and colon via STAT6 in an IBS model;risk perception and knowledge of COVID-19 in patients with celiac disease;pre-treatment HLADQA1-hladrb1 testing for the prevention of azathioprine-induced pancreatitis in inflammatory bowel disease: a prospective cohort study;and a high salt diet synergizes with UC microbiota to induce a proinflammatory immune tone in immunocompetent gnotobiotic mice.

11.
Front Med (Lausanne) ; 9: 941422, 2022.
Article in English | MEDLINE | ID: covidwho-2005881

ABSTRACT

Introduction: Coronavirus disease 2019 (COVID-19) is still causing a global pandemic. But the mechanism of COVID-19 severity is not well elucidated. Materials and methods: We conducted two single-center observational studies of patients with COVID-19. In the first study, the enrolled patients were distinguished based on critical vs. non-critical COVID-19. We collected blood samples from the patients at admission to measure markers related to inflammation and thrombosis and stool samples to analyze the fecal microbiome, metabolome, and calprotectin level. In the second study, we collected ileum and colon tissue samples from patients with critical COVID-19 who required colonoscopy due to severe gastrointestinal symptoms and analyzed mucosal gene expression. Results: A total of 19 blood samples and 10 stool samples were collected. Interleukin (IL)-6 was the only serum inflammatory marker with significantly higher levels in the critical group than in the non-critical group. The fecal calprotectin level in the critical group was significantly higher than that in the non-critical group (P = 0.03), regardless of the presence of gastrointestinal symptoms. Stool metabolomic analysis showed that the level of indole-3-propionic acid, a ligand for aryl hydrocarbon receptor (AhR), was markedly decreased in the critical group compared to that in the non-critical group (P = 0.01). The expression of genes involved in tryptophan metabolism, including ACE2, AHR, CARD9, and IL22, was downregulated in the ileum of critical COVID-19 patients who required a colonoscopy. Discussion: Critical COVID-19 patients have gastrointestinal inflammation potentially caused by impaired tryptophan metabolism in the small intestine due to decreased expression of genes involved in tryptophan metabolism.

12.
Tehran University Medical Journal ; 80(2):82-90, 2022.
Article in Persian | EMBASE | ID: covidwho-1955731

ABSTRACT

Background: Nowadays, the COVID-19 pandemic has become a global problem that new methods must be used to prevent it. The virus is highly contagious and is mainly transmitted through the air. Ozone is a powerful oxidant that can be used to inactivate a wide range of viruses that may be resistant to other disinfectants. The purpose of this study was to review the use and effect of ozone in inactivating indoor viruses. Methods: To conduct this review study, the keywords such as ozone, virus and air were used to search the PubMed and Scopus databases. Articles were searched from 2010 to 2020. As a result of the search, 57 articles in this field were selected and their content and results were used in this review study. Results: This review study showed that ozone has been successfully used to prevent several viral diseases such as COVED-19. In addition, some viruses, such as coronaviruses, contain sulfhydryl functional groups containing cysteine and tryptophan that react better with ozone gas. The infected person's sneezing may result in the formation of 40,000 droplets in the air. The droplets can be transferred to the nearest surface up to approximately 2 meters before falling and also may remain in the air for 30 hours. Conclusion: The use of ozone gas has many potential applications in inactivating viruses in enclosed spaces. Given the importance of virus-containing aerosols in the transmission of COVED-19, ozone can be a promising way to prevent the disease. The degree of inactivation of viruses by ozone gas depends on the gas concentration, contact time, temperature, humidity and type of virus. In general, studies in this field have shown the use of ozone gas in preventing the spread of viral diseases such as COVED-19. Necessary safety measures and precautions are also recommended in using this gas.

13.
BMC Infect Dis ; 22(1): 615, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1938292

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is accompanied by activated immune-inflammatory pathways and oxidative stress, which both induce indoleamine-2,3-dioxygenase (IDO), a key enzyme of the tryptophan (TRP) catabolite (TRYCAT) pathway. The aim of this study was to systematically review and meta-analyze the status of the TRYCAT pathway, including the levels of TRP and kynurenine (KYN) and the activity of IDO, as measured by the ratio of KYN/TRP. METHODS: This systematic review searched PubMed, Google Scholar, and Web of Sciences and included 14 articles that compared TRP and tryptophan catabolites (TRYCATs) in COVID-19 patients versus non-COVID-19 controls, as well as severe/critical versus mild/moderate COVID-19. The analysis was done on a total of 1269 people, including 794 COVID-19 patients and 475 controls. RESULTS: The results show a significant (p < 0.0001) increase in the KYN/TRP ratio (standardized mean difference, SMD = 1.099, 95% confidence interval, CI: 0.714; 1.484) and KYN (SMD = 1.123, 95% CI: 0.730; 1.516) and significantly lower TRP (SMD = - 1.002, 95%CI: - 1.738; - 0.266) in COVID-19 versus controls. The KYN/TRP ratio (SMD = 0.945, 95%CI: 0.629; 1.262) and KYN (SMD = 0.806, 95%CI: 0.462; 1.149) were also significantly (p < 0.0001) higher and TRP lower (SMD = - 0.909, 95% CI: - 1.569; - 0.249) in severe/critical versus mild/moderate COVID-19. No significant difference was detected in kynurenic acid (KA) and the KA/KYN ratio between COVID-19 patients and controls. CONCLUSIONS: Our results indicate increased activity of the IDO enzyme in COVID-19 and severe/critical patients. The TRYCAT pathway is implicated in the pathophysiology and progression of COVID-19 and may signal a worsening outcome of the disease.


Subject(s)
COVID-19 , Kynurenine , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Tryptophan/metabolism
14.
Transl Anim Sci ; 6(2): txac057, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1931906

ABSTRACT

The COVID-19 global pandemic greatly affected pork processing plants in the United States. These pork processing plants were forced to either temporarily close or operate at reduced capacity due to the increased number of health-related employee absences. Because finishing pigs could not be timely marketed, methods to reduce growth performance were required to keep pigs from becoming too heavy at slaughter weight. Therefore, our objective was to determine the extent that reducing dietary standardized ileal digestible (SID) Lys and tryptophan-to-lysine ratio (Trp:Lys) ratio would slow finishing pig average daily gain (ADG) in a commercial setting. A total of 1,080 finishing pigs (327 × 1050, PIC; initially 32.3 kg) were used in a 119-d growth trial. Pigs were allotted by initial body weight (BW) and randomly assigned to 1 of 4 dietary treatments in a completely randomized block design with 27 pigs per pen and 10 pens per treatment. Three dietary regimes were formulated to contain either 100%, 90%, or 80% of the estimated SID Lys requirement for pigs in this facility, with a SID Trp:Lys ratio of 19%, with the exception of the last dietary phase formulated to 17% SID Trp:Lys. Seven different dietary phases were fed. The SID Lys concentrations in the 100% diets were: 1.10%, 1.01%, 0.91%, 0.83%, 0.79%, 0.71%, or 0.67% SID Lys from 32 to 40, 40 to 51, 51 to 72, 72 to 85, 85 to 98, 98 to 112, and 112 to 130 kg, respectively. A fourth regime was formulated to 80% SID Lys with a SID Trp:Lys ratio of 16% (80-16% SID Trp:Lys) throughout all phases. Overall from d 0 to 119, ADG (linear, P < 0.001), final BW (linear, P < 0.001), and gain-to-feed (G:F) decreased (linear, P = 0.087) as SID Lys decreased from 100% to 80% of the estimated requirement. Pigs fed the 80-16% SID Trp:Lys diets had an additional decrease in ADG (P < 0.05) and G:F (P < 0.10) compared with pigs fed 80% of the SID Lys requirement with the normal Trp:Lys ratio. The reduction in SID Lys (from 100% to 80%) and reduction in SID Lys and Trp:Lys ratio resulted in an 8.6 and 11.7 kg, respectively, decrease in final BW compared with pigs fed Lys and Trp at the requirement (100%). This study provides alternatives for pork producers to reduce growth rate of finishing pigs.

15.
J Neural Transm (Vienna) ; 129(8): 1077-1089, 2022 08.
Article in English | MEDLINE | ID: covidwho-1919803

ABSTRACT

Coronavirus disease 2019 (COVID-19) has resulted in long-term psychiatric symptoms because of the immunologic response to the virus itself as well as fundamental life changes related to the pandemic. This immune response leads to altered tryptophan (TRP)-kynurenine (KYN) pathway (TKP) metabolism, which plays an essential role in the pathophysiology of mental illnesses. We aimed to define TKP changes as a potential underlying mechanism of psychiatric disorders in post-COVID-19 patients. We measured plasma levels of several TKP markers, including KYN, TRP, kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and quinolinic acid (QUIN), as well as the TRP/KYN, KYNA/3-HK, and KYNA/QUIN ratios, in 90 post-COVID-19 patients (on the first day of hospitalization) and 59 healthy controls (on the first admission to the Check-Up Center). An online questionnaire that included the Depression, Anxiety and Stress Scale-21 (DASS-21) was used 6 months after the initial assessment in both groups. A total of 32.2% of participants with COVID-19 showed depressive symptoms, 21.1% exhibited anxiety, and 33.3% had signs of stress at follow-up, while 6.6% of healthy controls exhibited depressive and anxiety symptoms and 18.6% had signs of stress. TRP and 3-HK were negative predictors of anxiety and stress, but KYN positively predicted anxiety and stress. Moreover, TRP negatively predicted depression, while KYNA/3-HK was a negative predictor of anxiety. The correlation between depression, anxiety, and stress and TKP activation in COVID-19 could provide prospective biomarkers, especially the reduction in TRP and 3HK levels and the increase in KYN. Our results suggest that the alteration of TKP is not only a potential biomarker of viral infection-related long-term psychiatric disorders but also that the therapy targets future viral infections related to depression and anxiety.


Subject(s)
COVID-19 , Kynurenine , Anxiety/etiology , Biomarkers , Depression , Humans , Kynurenic Acid , Survivors , Tryptophan
16.
Heliyon ; 8(6): e09733, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1907066

ABSTRACT

Background: In Covid-19, profound systemic inflammatory responses are accompanied by both metabolic risk factors for severity and, separately, metabolic mechanisms have been shown to underly disease progression. It is unknown whether this reflects similar situations in sepsis or is a unique characteristic of Covid-19. Aims: Define the immunometabolic signature of Covid-19. Methods: 65 patients with Covid-19,19 patients with sepsis and 14 healthy controls were recruited and sampled for plasma, serum and peripheral blood mononuclear cells (PBMCs) through 10 days of critical illness. Metabotyping was performed using the Biocrates p180 kit and multiplex cytokine profiling undertaken. PBMCs underwent phenotyping by flow cytometry. Immune and metabolic readouts were integrated and underwent pathway analysis. Results: Phopsphatidylcholines (PC) are reduced in Covid-19 but greater than in sepsis. Compared to controls, tryptophan is reduced in Covid-19 and inversely correlated with the severity of the disease and IFN-É£ concentrations, conversely the kyneurine and kyneurine/tryptophan ratio increased in the most severe cases. These metabolic changes were consistent through 2 pandemic waves in our centre. PD-L1 expression in CD8+ T cells, Tregs and CD14+ monocytes was increased in Covid-19 compared to controls. Conclusions: In our cohort, Covid-19 is associated with monocytopenia, increased CD14+ and Treg PD-L1 expression correlating with IFN-É£ plasma concentration and disease severity (SOFA score). The latter is also associated with metabolic derangements of Tryptophan, LPC 16:0 and PCs. Lipid metabolism, in particular phosphatidylcholines and lysophosphatidylcolines, seems strictly linked to immune response in Covid-19. Our results support the hypothesis that IFN-É£ -PD-L1 axis might be involved in the cytokine release syndrome typical of severe Covid-19 and the phenomenon persisted through multiple pandemic waves despite use of immunomodulation.

17.
Biomedicines ; 10(6)2022 Jun 06.
Article in English | MEDLINE | ID: covidwho-1883994

ABSTRACT

Despite intense investigation, the pathogenesis of COVID-19 and the newly defined long COVID-19 syndrome are not fully understood. Increasing evidence has been provided of metabolic alterations characterizing this group of disorders, with particular relevance of an activated tryptophan/kynurenine pathway as described in this review. Recent histological studies have documented that, in COVID-19 patients, indoleamine 2,3-dioxygenase (IDO) enzymes are differentially expressed in the pulmonary blood vessels, i.e., IDO1 prevails in early/mild pneumonia and in lung tissues from patients suffering from long COVID-19, whereas IDO2 is predominant in severe/fatal cases. We hypothesize that IDO1 is necessary for a correct control of the vascular tone of pulmonary vessels, and its deficiency in COVID-19 might be related to the syndrome's evolution toward vascular dysfunction. The complexity of this scenario is discussed in light of possible therapeutic manipulations of the tryptophan/kynurenine pathway in COVID-19 and post-acute COVID-19 syndromes.

18.
Marine Drugs ; 20(5):304, 2022.
Article in English | ProQuest Central | ID: covidwho-1871726

ABSTRACT

Four new cytotoxic indole-diterpenoids (penerpenes K-N), along with twelve other known compounds, have been discovered by Dai et al. from the fermentation broth produced by adding L-tryptophan to the culture medium of Penicillium sp. Three compounds (penerpene N, epipaxilline, emindole SB) were found to be cytotoxic to cancer cell lines, of which the known compound, epipaxilline, was the most active and showed cytotoxic activity against the human liver cancer cell line BeL-7402 with an IC50 value of 5.3 μM. Moreover, six compounds, namely paxilline, 7-hydroxyl-13-dehydroxypaxilline, 7-hydroxypaxilline-13-ene, 4a-demethylpaspaline-4a-carboxylic acid, PC-M6 and emindole SB, showed antibacterial activities against Staphylococcus aureus ATCC 6538 and Bacillus subtilis ATCC 6633 [3]. [...]the authors of this manuscript have also reported, for the first time, a putative lysosomal acid lipase produced by a green microalgae [7]. In this review, the authors have summarized the list of 145 natural products isolated from microorganisms associated with sea cucumbers between 2000 and 2021, which include polyketides, alkaloids and terpenoids as well as their reported biological activities [8].

19.
Front Nutr ; 9: 868845, 2022.
Article in English | MEDLINE | ID: covidwho-1809461

ABSTRACT

The severity of coronavirus disease 2019 (COVID-19) is characterized by systemic damage to organs, including skeletal muscle, due to excessive secretion of inflammatory cytokines. Clinical studies have suggested that the kynurenine pathway of tryptophan metabolism is selectively enhanced in patients with severe COVID-19. In addition to acting as a receptor for severe acute respiratory syndrome coronavirus 2, the causative virus of COVID-19, angiotensin converting enzyme 2 (ACE2) contributes to tryptophan absorption and inhibition of the renin-angiotensin system. In this article, we review previous studies to assess the potential for a link between tryptophan metabolism, ACE2, and skeletal muscle damage in patients with COVID-19.

20.
Pure and Applied Chemistry ; 0(0):10, 2022.
Article in English | Web of Science | ID: covidwho-1765566

ABSTRACT

From the receptor-binding domain (RBD) of the SARS-CoV-2 virus, which causes coronavirus disease 2019 (COVID-19), a RBD-hFc fusion protein was obtained at the Center of Molecular Immunology (Havana, Cuba). This fusion protein was used in the construction of a diagnostic device for COVID-19 called Ultramicroenzyme-Linked Immunosorbent Assay (UMELISA)-SARS-CoV-2-IgG and it is currently been used in the studies of biological activity of the Cuban vaccine Abdala (CIGB-66). In this work, Circular Dichroism (CD) is used to characterize this protein. Using Far Ultraviolet Circular Dichroism (FAR-UV CD), it was determined that the protein has a secondary structure in the form of a sheet-beta fundamentally. Using this technique, a thermodynamic study was carried out and it was determined that the melting temperature (Tm) of the protein is 71.5 degrees C. Information about the tertiary structure of the protein was obtained using Near Ultraviolet Circular Dichroism (NEAR-UV CD) and Molecular Fluorescence;they indicates that the protein has a three-dimensional folding associated with the aromatic amino acids in its structure, where tryptophan (Trp) is located inside the folded structure of the protein while tyrosine (Tyr) is exposed to the solvent.

SELECTION OF CITATIONS
SEARCH DETAIL